「AIドクター」、患者の予後予測能力を実証 死亡リスク含め
チームが開発したのは、大規模言語モデルの「NYUTron」。ニューヨーク市内の同大系列の病院ですでに使用されている。
AIの学習は、2011年1月~20年5月に系列病院で治療を受けた患者38万7000人分の記録を用いて行った。患者の経過記録から放射線検査報告書、退院指示書まで医師が書いたあらゆる記録に基づき、41億語から成るデータベースが作成された。
■人間の代替ではない
これまでNYUTronは、入院中に死亡した患者の95%、30日以内に再入院した患者の80%について、現実と同じ結果を予測できた。
また、患者の入院期間に関しては79%、保険適用を拒否されたケースの87%、原疾患に加え続発性疾患を併発した症例の89%を正確に予想した。
NYUTronの予測能力は多くの医師や、現在使用されているAI以外のコンピューターモデルをしのいでいた。
ただし、「ある著名なベテラン医師はAIを上回る超人的なパフォーマンスを発揮した」と、同大の神経外科医でコンピューター科学者でもある論文の主著者、エリック・オールマン氏はAFPに語った。この点はチームにとって意外だったという。
同氏は、AIは決して治療に当たる医師に置き換わるものではなく、「より多くの情報に基づいた決定を医師が行うための診療現場におけるシームレスな情報提供」を支援するものだと述べた。【翻訳編集AFPBBNews】
〔AFP=時事〕(2023/06/08-17:05)
'AI doctor' better at predicting patient outcomes, including death
Artificial intelligence has proven itself useful in reading medical imaging and even shown it can pass doctors' licensing exams.
Now, a new AI tool has demonstrated the ability to read physicians' notes and accurately anticipate patients' risk of death, readmission to hospital, and other outcomes important to their care.
Designed by a team at NYU Grossman School of Medicine, the software is currently in use at the university's affiliated hospitals throughout New York, with the hope that it will become a standard part of health care.
A study on its predictive value was published Wednesday in the journal Nature.
Lead author Eric Oermann, an NYU neurosurgeon and computer scientist, told AFP that while non-AI predictive models have been around in medicine for a long time, they were hardly used in practice because the data they needed requires cumbersome reorganization and formatting.
But one thing that's common in medicine everywhere, is physicians write notes about what they've seen in clinic, what they've discussed with patients, he said.
So our basic insight was, can we start with medical notes as our source of data, and then build predictive models on top of it?
The large language model, called NYUTron, was trained on millions of clinical notes from the health records of 387,000 people who received care within NYU Langone hospitals between January 2011 and May 2020.
These included any records written by doctors, such as patient progress notes, radiology reports and discharge instructions, resulting in a 4.1-billion-word corpus.
One of the key challenges for the software was interpreting the natural language that physicians write in, which varies greatly among individuals, including in the abbreviations they choose.
By looking back at records of what happened, researchers were able to calculate how often the software's predictions turned out to be accurate.
They also tested the tool in live environments, training it on the records from, for example, a hospital in Manhattan then seeing how it fared in a Brooklyn hospital, with different patient demographics.
- Not a substitute for humans -
Overall, NYUTron identified an unnerving 95 percent of people who died in hospital before they were discharged, and 80 percent of patients who would be readmitted within 30 days.
It outperformed most doctors on its predictions, as well as the non-AI computer models used today.
But, to the team's surprise, the most senior physician who's actually a very famous physician, he had superhuman performance, better than the model, said Oermann.
The sweet spot for technology and medicine isn't that it's going to always deliver necessarily superhuman results, but it's going to really bring up that baseline.
NYUTron also correctly estimated 79 percent of patients' actual length of stay, 87 percent of cases where patients were denied coverage by insurance, and 89 percent of cases where a patient's primary disease was accompanied by additional conditions.
AI will never be a substitute for the physician-patient relationship, said Oermann. Rather, they will help provide more information for physicians seamlessly at the point-of-care so they can make more informed decisions.
最新ニュース
-
ガザ停戦が発効=ハマスが人質解放―直前で混乱、攻撃続き19人死亡
-
W杯複合・談話
-
山本涼は21位=W杯複合
-
首脳会談へ地ならし=岩屋外相、就任式で訪米
-
神戸山口組組長宅に火炎瓶か=75歳男を逮捕―兵庫
写真特集
-
【高校通算140本塁打の強打者】佐々木麟太郎
-
【駅伝】第101回箱根駅伝〔2025〕
-
【野球】慶応大の4番打者・清原正吾
-
【競馬】女性騎手・藤田菜七子
-
日本人メダリスト〔パリパラリンピック〕
-
【近代五種】佐藤大宗〔パリ五輪〕
-
【アーティスティックスイミング】日本代表〔パリ五輪〕
-
【ゴルフ】山下美夢有〔パリ五輪〕